
[Click to Slide 1 - Title Screen]
Good Evening. My name is Nicholas Farkash and my topic

is Video Game Development. Video Game Development, as the
name suggests, is the process by which a video game is
developed, or created. There are a few words and phrases that
you should know before I get started.

[Click to Slide 2 - Key Phrases]
The code is the set of words that gets read by the computer.

It contains instructions that are carried out to perform tasks. The
code is located in a text file known as a script.

C# is the programming language I use for my project.
Simply put, it’s the language the code is written in. C# was
created by Microsoft as part of their .NET initiative with the
ultimate goal of creating an easy-to-understand programming
language.

A game engine is the software used to combine the
elements of a video game together. It takes the graphics, code,
and sound and brings them all together. The game engine I am
using for my project is Unity.

[Click to Slide 3 - Video Game Development Team]
Creating a video game takes a long time and is a lot of

work to be done by one person. Most video games are developed
by multiple teams of people who focus on one specific task.



Those groups will then put their individual parts of the game
together in a game engine to produce the game. Programmers
write the code, Graphic Designers create characters, scenery,
and objects, Sound engineers create sound effects and music for
the game, Level Designers build the levels, and Testers play the
game to check for any issues. For a large company, a single team
can be composed of hundreds of people. When all the groups are
put together, the number of people can easily reach into the
thousands, and the game will still take a few years to be fully
developed.

[Click to Slide 4 - Chart]
Here is a more detailed chart of some of the jobs in video

game development.

[Click to Slide 5 - Process]
For my presentation, I will be breaking down the process

of video game development into six categories. I believe these to
be the six most important parts of the process. These are
Establishing Controls, Writing the Code, Animating, Creating
Graphics, Creating Sounds, and Level Construction.



[Click to Slide 6 - Controls]
Establishing controls in Unity is easy because there is very

little work involved. By inserting one line of code, “Using
UnityEngine”, the code gains access to Unity’s default controls.

From there, I can change the controls to my preference by
adjusting the keys on my keyboard or configuring a controller.

[Click to Slide 7 - Code]
Code is written in a text file. When imported into Unity, it

is most often referred to as a script. It contains information about
how objects interact with one another, much like how a play
script works.

A Character Controller Script is the foundation for the
controls. It uses a line of code, “using UnityEngine;” to access
Unity. From there, Unity will refer to the Character Controller
Script as the game is being played.

Another major script is the Player Movement Script. This is
the code that will move the character.

There are 3 other scripts in my game. 2 of the scripts are for
a main menu and a pause menu and the third respawns the
character.

[Click to Slide 8 - Character Controller]
This is a Character Controller I got from a tutorial. I did not

write it myself. It is not recommended that beginners create their



own character controllers because there is too much coding
involved. Instead, they should spend their time building the
game and writing smaller scripts. With that being said, the
Character Controller is responsible for giving the player the
ABILITY to move. However, it doesn’t actually move the
character. That is done in the Player Movement Script.

[Click to Slide 9 - Main Screen]
Off to the right, there is a tab called “Inspector”. It lists the

object that is currently selected, in this case, the Player, and all
of the components that are assigned to it. Here is the Character
Controller. It contains the script, which is the code on the
previous slide. It gives some options, such as how high the
character will jump, how fast he will move if he is crouching,
and if the character can be controlled mid-air. These “checks”
allow the character to perform actions. The Ground Check is
used to jump and crouch, the Ceiling Check lets the character
get up after crouching, and the Crouch Disable Collider removes
his top collider to allow him to move under platforms.

[Click to Slide 10 - Player Movement Script]
This is the Player Movement Script. As the name suggests,

it is responsible for moving the player. Specifically, it controls
horizontal movement, jumping, crouching. It also contains their
respective animation codes, which tells Unity to play the



animations. The Movement Script is much smaller than the
Character Controller because the Character Controller does most
of the work. The Player Movement Script will be referenced by
the Character Controller Script, which will then take care of the
rest.

[Click to Slide 11 - Main Screen]
In the Inspector, you can see that there isn’t much under the

Player Movement Script component. There is the run speed,
which is self-explanatory, and three slots, Script, Controller, and
Animator. These are references used by the Character Controller
to do most of the work. The script is the Player Movement
Script. The Controller is the Character Controller Script, which
was previously shown. The Animator holds all of the animations
in one place for easy reference. Putting each of these in their
respective slots allows them to interact with each other.

[Click to Slide 12 - Animation]
So what are Animations? Animations are the visual effects

performed by an object in the game. Most often, these
animations are performed on the player. These animations make
the character run, jump, and crouch. Each animation is
comprised of several pictures. The pictures are cycled through
quickly to make the character look like it’s moving. Animations



are created in the Animation window of Unity. This is not to be
confused with the Animator Window.

[Click to Slide 13 - Animator]
The Animator controls which animations play depending

on what is happening in the game. It creates transitions between
animations that switch when certain conditions are met. For
example, a walking animation would be played if speed was
between 0 and 10, while a running animation would be played if
the speed was greater than 10. These are the conditions, which
determine what animation is played. In order to switch between
the walking and running animations, a transition is needed. Each
of these arrows is a transition, and each transition allows the
character to switch from one animation to another, following the
direction of the arrow. If all conditions of a transition are met,
the animations will switch.

[Click to Slide 14 - Sound and Graphics]
Now that the gameplay is finished, the next up is sound and

graphics. My game music was created in Bosca Ceoil. It is a
program that allows the user to create music. It contains many
different instruments and allows for innumerable songs to be



composed. To edit the sound clips, I used WavePad Audio
Editor. It allowed me to change the sound clip’s pitch, timing,
and volume.

Most of my personal graphics were created in Microsoft
Paint. I created the flowers, grass, rocks, and platforms.
However, creating a character is a little more complex, as it
needs animation and has to look good because it is the
centerpiece of the game. Fortunately, Unity makes things very
easy and comes with an Asset Store.

[Click to Slide 15 - Asset Store]
cFor my game, I am using two packages from the Asset

Store. The first one was for my character and his animations.
The second was an addition to the camera, which allows it to
follow the character as he moves and makes the camera
smoother.

[Click to Slide 16 - Level Construction]
Building levels in Unity is fairly simple. It just involves a

bunch of clicking to import assets and add components. After
the level has been constructed, it is important to test the level to
make sure it works properly.

Testing is an important part of video game development.
Programmers are people too, and they often make mistakes that
can result in glitches, making a game unplayable. Testers play



through the game to find mistakes and provide feedback,
improving the quality of the game.

[Click to Slide 17 - Asset Screen]
Importing Assets is very easy in Unity. Among the folders

that will appear as the game gets more complex, there will be
one labeled Assets. This is where personally made objects will
go, but not the ones from the Asset Store. Downloaded assets
are placed in individual folders to keep all assets in one place. In
the Scene view, you just click, drag, and drop the asset onto the
screen and it appears.

[Click to Slide 18 - Main Screen
From there you can move it around and add components.

One such component is a collider, which can be added to make
two objects hit each other. Another common component is
Rigidbody, Unity’s physics system. It adds gravity, mass, and
other physics-related properties to an object. It allows the
character to fall back to the ground after the player has jumped.

When all of these components, Code, Controls, Animation,
Sound, Graphics, and Level Construction are put together, the
end result is a video game.

My game was available before the presentations began
outside the cafeteria and it will be available for you to play
[point to where the game] off to the side after all of the



presentations are over.

[Click to Slide 19 - Future]
Over the Summer, I will be working at Hofstra University

with my mentor, Dr. Edward Currie. Thank you.


